Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Analysis of Ring-Recovery Data Using Random Effects

S. C. Barry, S. P. Brooks, E. A. Catchpole and B. J. T. Morgan
Biometrics
Vol. 59, No. 1 (Mar., 2003), pp. 54-65
Stable URL: http://www.jstor.org/stable/3695812
Page Count: 12
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Analysis of Ring-Recovery Data Using Random Effects
Preview not available

Abstract

We show how random terms, describing both yearly variation and overdispersion, can easily be incorporated into models for mark-recovery data, through the use of Bayesian methods. For recovery data on lapwings, we show that the incorporation of the random terms greatly improves the goodness of fit. Omitting the random terms can lead to overestimation of the significance of weather on survival, and overoptimistic prediction intervals in simulations of future population behavior. Random effects models provide a natural way of modeling overdispersion-which is more satisfactory than the standard classical approach of scaling up all standard errors by a uniform inflation factor. We compare models by means of Bayesian p-values and the deviance information criterion (DIC).

Page Thumbnails

  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57
  • Thumbnail: Page 
58
    58
  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
  • Thumbnail: Page 
61
    61
  • Thumbnail: Page 
62
    62
  • Thumbnail: Page 
63
    63
  • Thumbnail: Page 
64
    64
  • Thumbnail: Page 
65
    65