If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

On the Post Hoc Power in Testing Mean Differences

Ke-Hai Yuan and Scott Maxwell
Journal of Educational and Behavioral Statistics
Vol. 30, No. 2 (Summer, 2005), pp. 141-167
Stable URL: http://www.jstor.org/stable/3701347
Page Count: 27
Were these topics helpful?

Select the topics that are inaccurate.

  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the Post Hoc Power in Testing Mean Differences
Preview not available

Abstract

Retrospective or post hoc power analysis is recommended by reviewers and editors of many journals. Little literature has been found that gave a serious study of the post hoc power. When the sample size is large, the observed effect size is a good estimator of the true effect size. One would hope that the post hoc power is also a good estimator of the true power. This article studies whether such a power estimator provides valuable information about the true power. Using analytical, numerical, and Monte Carlo approaches, our results show that the estimated power does not provide useful information when the true power is small. It is almost always a biased estimator of the true power. The bias can be negative or positive. Large sample size alone does not guarantee the post hoc power to be a good estimator of the true power. Actually, when the population variance is known, the cumulative distribution function of the post hoc power is solely a function of the population power. This distribution is uniform when the true power equals 0.5 and highly skewed when the true power is near 0 or 1. When the population variance is unknown, the post hoc power behaves essentially the same as when the variance is known.

Page Thumbnails

  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165
  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167