Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Comparison of Wood Decay among Diverse Lignicolous Fungi

James J. Worrall, Susan E. Anagnost and Robert A. Zabel
Mycologia
Vol. 89, No. 2 (Mar. - Apr., 1997), pp. 199-219
DOI: 10.2307/3761073
Stable URL: http://www.jstor.org/stable/3761073
Page Count: 21
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Comparison of Wood Decay among Diverse Lignicolous Fungi
Preview not available

Abstract

In decay tests with 98 isolates (78 species) of lignicolous fungi followed by chemical and anatomical analyses, the validity of the generally accepted, major decay types (white, brown, and soft rot) was confirmed, and no new major types proposed. We could distinguish soft rot from other decay types based on anatomical and chemical criteria, without reliance on cavities or recourse to taxonomy of causal agents. Chemically, soft rot of birch could be distinguished from white rot by lower Klason lignin loss, and from brown rot by much lower alkali solubility. Anatomically, erosion of birch fiber walls in soft rot was distinguished from that in white rot by the angular erosion channels. V-shaped notches and diamond-shaped, eroded pit apertures that predominated in the former and their rounded forms in the latter. Substantial decay was caused by fungi representing eight orders in addition to the Aphyllophorales. Members of the Exidiaceae generally caused low weight losses and anatomical and chemical patterns of degradation characteristic of white rot. Isolates of Auricularia auricula-judae also caused a white rot, with high weight losses and unusual, branching microcavities that were oriented longitudinally in the S2 cell-wall layer. Ten species of the Dacrymycetales caused a brown rot like that caused by some Aphyllophorales; most caused high weight losses. Among white-rot fungi on birch, a relationship was observed between strongly selective delignification and strongly selective utilization of mannose. Among brown-rot fungi on birch, the top two polyose sugars (not including glucose) in order of selectivity were galactose>mannose; among soft-rotters they were arabinose>xylose. On pine, distinctions were not so clear, but some differing trends were evident. Previously unreported selective delignifiers were found in the Auriculariales, Agaricales, and in two orders of gasteromycetes. Selective delignification was most pronounced at low weight losses. Certain decay features similar to those in the Ascomycota were found in the Auriculariales, consistent with hypotheses that place that order near the phylogenetic root of Basidiomycota. A sequence of origins of decay types is proposed.

Page Thumbnails

  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219