If you need an accessible version of this item please contact JSTOR User Support

Amatoxins in Wood-Rotting Galerina marginata

Françoise Enjalbert, Geneviève Cassanas, Sylvie Rapior, Corinne Renault and Jean-Pierre Chaumont
Mycologia
Vol. 96, No. 4 (Jul. - Aug., 2004), pp. 720-729
DOI: 10.2307/3762106
Stable URL: http://www.jstor.org/stable/3762106
Page Count: 10
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Amatoxins in Wood-Rotting Galerina marginata
Preview not available

Abstract

Amatoxins, bicyclic octapeptide derivatives responsible for severe hepatic failure, are present in several Basidiomycota species belonging to four genera, i.e. Amanita, Conocybe, Galerina and Lepiota. DNA studies for G. autumnalis, G. marginata, G. oregonensis, G. unicolor and G. venenata (section Naucoriopsis) determined that these species are the same, supporting the concept of Galerina marginata complex. These mostly lignicolous species are designated as white-rot fungi having a broad host range and capable of degrading both hardwoods and softwoods. Twenty-seven G. marginata basidiomes taken from different sites and hosts (three sets) as well as 17 A. phalloides specimens (three sets) were collected in French locations. The 44 basidiomes were examined for amatoxins and phallotoxins using high-performance liquid chromatography. Toxinological data for the wood-rotting G. marginata and the ectomycorrhizal A. phalloides species were compared and statistically analyzed. The acidic and neutral phallotoxins were not detected in any G. marginata specimen, whereas the acidic (β-Ama) and neutral (α-Ama and γ-Ama) amanitins were found in all basidiomes from either Angiosperms or Gymnosperms hosts. The G. marginata amatoxin content varied from 78.17 to 243.61 $\mu \text{g}.\text{mg}^{-1}$ of fresh weight and was elevated significantly in one set out of three. The amanitin amounts from certain Galerina specimens were higher than those from some A. phalloides basidiomes. Relationship between the amanitin distribution and the chemical composition of substrate was underlined and statistically validated for the white-rot G. marginata. Changes in nutritional components from decayed host due to enzymatic systems and genetic factors as well as environmental conditions seem to play a determinant role in the amanitin profile. Variability noticed in the amanitin distribution for the white-rot G. marginata basidiomes was not observed for the ectomycorrhizal A. phalloides specimens.

Page Thumbnails

  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721
  • Thumbnail: Page 
722
    722
  • Thumbnail: Page 
723
    723
  • Thumbnail: Page 
724
    724
  • Thumbnail: Page 
725
    725
  • Thumbnail: Page 
726
    726
  • Thumbnail: Page 
727
    727
  • Thumbnail: Page 
728
    728
  • Thumbnail: Page 
729
    729