Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Evaluating Mallard Adaptive Management Models with Time Series

Paul B. Conn and William L. Kendall
The Journal of Wildlife Management
Vol. 68, No. 4 (Oct., 2004), pp. 1065-1081
Published by: Wiley on behalf of the Wildlife Society
Stable URL: http://www.jstor.org/stable/3803662
Page Count: 17
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Evaluating Mallard Adaptive Management Models with Time Series
Preview not available

Abstract

Wildlife practitioners concerned with midcontinent mallard (Anas platyrhynchos) management in the United States have instituted a system of adaptive harvest management (AHM) as an objective format for setting harvest regulations. Under the AHM paradigm, predictions from a set of models that reflect key uncertainties about processes underlying population dynamics are used in coordination with optimization software to determine an optimal set of harvest decisions. Managers use comparisons of the predictive abilities of these models to gauge the relative truth of different hypotheses about density-dependent recruitment and survival, with better-predicting models giving more weight to the determination of harvest regulations. We tested the effectiveness of this strategy by examining convergence rates of "predictor" models when the true model for population dynamics was known a priori. We generated time series for cases when the a priori model was 1 of the predictor models as well as for several cases when the a priori model was not in the model set. We further examined the addition of different levels of uncertainty into the variance structure of predictor models, reflecting different levels of confidence about estimated parameters. We showed that in certain situations, the model-selection process favors a predictor model that incorporates the hypotheses of additive harvest mortality and weakly density-dependent recruitment, even when the model is not used to generate data. Higher levels of predictor model variance led to decreased rates of convergence to the model that generated the data, but model weight trajectories were in general more stable. We suggest that predictive models should incorporate all sources of uncertainty about estimated parameters, that the variance structure should be similar for all predictor models, and that models with different functional forms for population dynamics should be considered for inclusion in predictor model sets. All of these suggestions should help lower the probability of erroneous learning in mallard AHM and adaptive management in general.

Page Thumbnails

  • Thumbnail: Page 
1065
    1065
  • Thumbnail: Page 
1066
    1066
  • Thumbnail: Page 
1067
    1067
  • Thumbnail: Page 
1068
    1068
  • Thumbnail: Page 
1069
    1069
  • Thumbnail: Page 
1070
    1070
  • Thumbnail: Page 
1071
    1071
  • Thumbnail: Page 
1072
    1072
  • Thumbnail: Page 
1073
    1073
  • Thumbnail: Page 
1074
    1074
  • Thumbnail: Page 
1075
    1075
  • Thumbnail: Page 
1076
    1076
  • Thumbnail: Page 
1077
    1077
  • Thumbnail: Page 
1078
    1078
  • Thumbnail: Page 
1079
    1079
  • Thumbnail: Page 
1080
    1080
  • Thumbnail: Page 
1081
    1081