Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure

M. Hashem Pesaran
Econometrica
Vol. 74, No. 4 (Jul., 2006), pp. 967-1012
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/3805914
Page Count: 46
  • Read Online (Free)
  • Download ($10.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure
Preview not available

Abstract

This paper presents a new approach to estimation and inference in panel data models with a general multifactor error structure. The unobserved factors and the individual-specific errors are allowed to follow arbitrary stationary processes, and the number of unobserved factors need not be estimated. The basic idea is to filter the individual-specific regressors by means of cross-section averages such that asymptotically as the cross-section dimension (N) tends to infinity, the differential effects of unobserved common factors are eliminated. The estimation procedure has the advantage that it can be computed by least squares applied to auxiliary regressions where the observed regressors are augmented with cross-sectional averages of the dependent variable and the individual-specific regressors. A number of estimators (referred to as common correlated effects (CCE) estimators) are proposed and their asymptotic distributions are derived. The small sample properties of mean group and pooled CCE estimators are investigated by Monte Carlo experiments, showing that the CCE estimators have satisfactory small sample properties even under a substantial degree of heterogeneity and dynamics, and for relatively small values of N and T.

Page Thumbnails

  • Thumbnail: Page 
967
    967
  • Thumbnail: Page 
968
    968
  • Thumbnail: Page 
969
    969
  • Thumbnail: Page 
970
    970
  • Thumbnail: Page 
971
    971
  • Thumbnail: Page 
972
    972
  • Thumbnail: Page 
973
    973
  • Thumbnail: Page 
974
    974
  • Thumbnail: Page 
975
    975
  • Thumbnail: Page 
976
    976
  • Thumbnail: Page 
977
    977
  • Thumbnail: Page 
978
    978
  • Thumbnail: Page 
979
    979
  • Thumbnail: Page 
980
    980
  • Thumbnail: Page 
981
    981
  • Thumbnail: Page 
982
    982
  • Thumbnail: Page 
983
    983
  • Thumbnail: Page 
984
    984
  • Thumbnail: Page 
985
    985
  • Thumbnail: Page 
986
    986
  • Thumbnail: Page 
987
    987
  • Thumbnail: Page 
988
    988
  • Thumbnail: Page 
989
    989
  • Thumbnail: Page 
990
    990
  • Thumbnail: Page 
991
    991
  • Thumbnail: Page 
992
    992
  • Thumbnail: Page 
993
    993
  • Thumbnail: Page 
994
    994
  • Thumbnail: Page 
995
    995
  • Thumbnail: Page 
996
    996
  • Thumbnail: Page 
997
    997
  • Thumbnail: Page 
998
    998
  • Thumbnail: Page 
999
    999
  • Thumbnail: Page 
1000
    1000
  • Thumbnail: Page 
1001
    1001
  • Thumbnail: Page 
1002
    1002
  • Thumbnail: Page 
1003
    1003
  • Thumbnail: Page 
1004
    1004
  • Thumbnail: Page 
1005
    1005
  • Thumbnail: Page 
1006
    1006
  • Thumbnail: Page 
1007
    1007
  • Thumbnail: Page 
1008
    1008
  • Thumbnail: Page 
1009
    1009
  • Thumbnail: Page 
1010
    1010
  • Thumbnail: Page 
1011
    1011
  • Thumbnail: Page 
1012
    1012