Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Role of Oxidation in the Neurotoxic Effects of Intrastriatal Dopamine Injections

Teresa G. Hastings, David A. Lewis and Michael J. Zigmond
Proceedings of the National Academy of Sciences of the United States of America
Vol. 93, No. 5 (Mar. 5, 1996), pp. 1956-1961
Stable URL: http://www.jstor.org/stable/38446
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Role of Oxidation in the Neurotoxic Effects of Intrastriatal Dopamine Injections
Preview not available

Abstract

We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 μ mol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.

Page Thumbnails

  • Thumbnail: Page 
1956
    1956
  • Thumbnail: Page 
1957
    1957
  • Thumbnail: Page 
1958
    1958
  • Thumbnail: Page 
1959
    1959
  • Thumbnail: Page 
1960
    1960
  • Thumbnail: Page 
1961
    1961