Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Factor XII-Induced Mitogenesis is Mediated Via a Distinct Signal Transduction Pathway that Activates a Mitogen-Activated Protein Kinase

Erlinda M. Gordon, Natarajan Venkatesan, Roberto Salazar, Hui Tang, Katherine Schmeidler-Sapiro, Susan Buckley, David Warburton and Frederick L. Hall
Proceedings of the National Academy of Sciences of the United States of America
Vol. 93, No. 5 (Mar. 5, 1996), pp. 2174-2179
Stable URL: http://www.jstor.org/stable/38486
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Factor XII-Induced Mitogenesis is Mediated Via a Distinct Signal Transduction Pathway that Activates a Mitogen-Activated Protein Kinase
Preview not available

Abstract

Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor / tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1 / 10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated / extracellular signal-regulated protein kinase with peak activity / tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.

Page Thumbnails

  • Thumbnail: Page 
2174
    2174
  • Thumbnail: Page 
2175
    2175
  • Thumbnail: Page 
2176
    2176
  • Thumbnail: Page 
2177
    2177
  • Thumbnail: Page 
2178
    2178
  • Thumbnail: Page 
2179
    2179