Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants

Vered Raz and Robert Fluhr
The Plant Cell
Vol. 5, No. 5 (May, 1993), pp. 523-530
DOI: 10.2307/3869707
Stable URL: http://www.jstor.org/stable/3869707
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants
Preview not available

Abstract

A plethora of abiotic and biotic environmental stresses exert their influence on plants via the gaseous hormone ethylene. In addition, aspects of plant development and climacteric fruit ripening are regulated by ethylene. Sensitivity to ethylene is presumably mediated by a specific ethylene receptor whose activation signal is then transduced via an unknown cascade pathway. We have used the plant pathogenesis response, exemplified by the induction of pathogenesis-related (PR) genes, as a paradigm to investigate ethylene-dependent signal transduction in the plant cell. Ethylene application induced very rapid and transient protein phosphorylation in tobacco leaves. In the presence of the kinase inhibitors H-7 and K-252a, the transient rise in phosphorylation and the induced expression of PR genes were abolished. Similarly, these inhibitors blocked the response induced by an ethylene-dependent elicitor, α-AB. Reciprocally, application of okadaic acid, a specific inhibitor of phosphatases type 1 and type 2A, enhanced total protein phosphorylation and by itself elicited the accumulation of PR proteins. In the presence of H-7 and K-252a, PR protein accumulation induced by okadaic acid was blocked. In contrast to the action of ethylene and α-AB, xylanase elicits the accumulation of PR protein by an ethylene-independent pathway. Xylanase-induced PR protein accumulation was not affected by H-7 and K-252a. The results indicate that responsiveness to ethylene in leaves is transduced via putative phosphorylated intermediates that are regulated by specific kinases and phosphatases.

Page Thumbnails

  • Thumbnail: Page 
[523]
    [523]
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530