Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Nuclear Import in Permeabilized Protoplasts from Higher Plants Has Unique Features

Glenn R. Hicks, Harley M. S. Smith, Stephane Lobreaux and Natasha V. Raikhel
The Plant Cell
Vol. 8, No. 8 (Aug., 1996), pp. 1337-1352
DOI: 10.2307/3870305
Stable URL: http://www.jstor.org/stable/3870305
Page Count: 16
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Nuclear Import in Permeabilized Protoplasts from Higher Plants Has Unique Features
Preview not available

Abstract

The import of proteins into the nucleus is a poorly understood process that is thought to require soluble cytosolic factors in vertebrates and yeast. To test this model in plants and to identify components of the import apparatus, we developed a direct in vitro nuclear import assay by using tobacco protoplasts that were permeabilized without detergents such as digitonin or Triton X-100. Substrates were imported specifically by a mechanism that required only guanine nucleotides. Moreover, in vitro import did not require exogenous cytosol. To investigate this novel finding, we isolated a full-length cDNA encoding an Arabidopsis homolog of vertebrate and yeast nuclear localization signal receptors and produced an affinity-purified antibody. The plant receptor was tightly associated with cellular components in permeabilized protoplasts, even in the presence of 0.1% Triton X-100, indicating that this factor and probably others were retained to an extent sufficient to support import. The lectin wheat germ agglutinin bound to the nucleus; however, it did not block translocation in our system, indicating that direct interaction with polysaccharide modifications at the nuclear pore complex was probably not essential for import in plants. Other features of in vitro import included reduced but significant import at low temperature.

Page Thumbnails

  • Thumbnail: Page 
[1337]
    [1337]
  • Thumbnail: Page 
1338
    1338
  • Thumbnail: Page 
1339
    1339
  • Thumbnail: Page 
1340
    1340
  • Thumbnail: Page 
1341
    1341
  • Thumbnail: Page 
1342
    1342
  • Thumbnail: Page 
1343
    1343
  • Thumbnail: Page 
1344
    1344
  • Thumbnail: Page 
1345
    1345
  • Thumbnail: Page 
1346
    1346
  • Thumbnail: Page 
1347
    1347
  • Thumbnail: Page 
1348
    1348
  • Thumbnail: Page 
1349
    1349
  • Thumbnail: Page 
1350
    1350
  • Thumbnail: Page 
1351
    1351
  • Thumbnail: Page 
1352
    1352