Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Arabidopsis FUSCA5 Encodes a Novel Phosphoprotein That Is a Component of the COP9 Complex

Baruch Karniol, Przemyslaw Malec and Daniel A. Chamovitz
The Plant Cell
Vol. 11, No. 5 (May, 1999), pp. 839-848
DOI: 10.2307/3870818
Stable URL: http://www.jstor.org/stable/3870818
Page Count: 10
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Arabidopsis FUSCA5 Encodes a Novel Phosphoprotein That Is a Component of the COP9 Complex
Preview not available

Abstract

The COP9 complex is a regulator essential for repression of light-mediated development in Arabidopsis. Using partial amino acid sequence data generated from purified COP9 complexes, we cloned the Arabidopsis cDNA encoding the 27-kD subunit of the COP9 complex and showed that it is encoded by the previously identified FUSCA5 (FUS5) locus. fus5 mutants exhibit constitutive photomorphogenic phenotypes similar to those of cop9 and fus6. Point mutations in FUS5 that led to a loss of FUS5 protein were detected in four fus5 allelic strains. FUS5 contains the PCI/PINT and mitogen-activated protein kinase kinase activation loop motifs and is highly conserved with the mammalian COP9 complex subunit 7 and the Aspergillus nidulans AcoB proteins. FUS5 is present in both complex and monomeric forms. In the COP9 complex, FUS5 may interact directly with FUS6 and COP9. Mutations in FUS6 and COP9 result in a shift in the electrophoretic mobility of FUS5. This shift can be mimicked by in vitro phosphorylation of FUS5 by plant extracts. These findings further support the hypothesis that the COP9 complex is a central and common regulator that may interact with multiple signaling pathways.

Page Thumbnails

  • Thumbnail: Page 
[839]
    [839]
  • Thumbnail: Page 
840
    840
  • Thumbnail: Page 
841
    841
  • Thumbnail: Page 
842
    842
  • Thumbnail: Page 
843
    843
  • Thumbnail: Page 
844
    844
  • Thumbnail: Page 
845
    845
  • Thumbnail: Page 
846
    846
  • Thumbnail: Page 
847
    847
  • Thumbnail: Page 
848
    848