Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate

Martha L. Orozco-Cárdenas, Javier Narváez-Vásquez and Clarence A. Ryan
The Plant Cell
Vol. 13, No. 1 (Jan., 2001), pp. 179-191
DOI: 10.2307/3871162
Stable URL: http://www.jstor.org/stable/3871162
Page Count: 13
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate
Preview not available

Abstract

The systemic accumulation of both hydrogen peroxide ( H2 O2) and proteinase inhibitor proteins in tomato leaves in response to wounding was inhibited by the NADPH oxidase inhibitors diphenylene iodonium (DPI), imidazole, and pyridine. The expression of several defense genes in response to wounding, systemin, oligosaccharides, and methyl jasmonate also was inhibited by DPI. These genes, including those of four proteinase inhibitors and polyphenol oxidase, are expressed within 4 to 12 hr after wounding. However, DPI did not inhibit the wound-inducible expression of genes encoding prosystemin, lipoxygenase, and allene oxide synthase, which are associated with the octadecanoid signaling pathway and are expressed 0.5 to 2 hr after wounding. Accordingly, treatment of plants with the H2 O2-generating enzyme glucose oxidase plus glucose resulted in the induction of only the later-expressed defensive genes and not the early-expressed signaling-related genes. H2 O2 was cytochemically detected in the cell walls of vascular parenchyma cells and spongy mesophyll cells within 4 hr after wounding of wild-type tomato leaves, but not earlier. The cumulative results suggest that active oxygen species are generated near cell walls of vascular bundle cells by oligogalacturonide fragments produced by wound-inducible polygalacturonase and that the resulting H2 O2 acts as a second messenger for the activation of defense genes in mesophyll cells. These data provide a rationale for the sequential, coordinated, and functional roles of systemin, jasmonic acid, oligogalacturonides, and H2 O2 signals for systemic signaling in tomato plants in response to wounding.

Page Thumbnails

  • Thumbnail: Page 
[179]
    [179]
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191