Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Unique 33-kD Cysteine Proteinase Accumulates in Response to Larval Feeding in Maize Genotypes Resistant to Fall Armyworm and Other Lepidoptera

Tibor Pechan, Lijun Ye, Yu-min Chang, Anurina Mitra, Lei Lin, Frank M. Davis, W. Paul Williams and Dawn S. Luthe
The Plant Cell
Vol. 12, No. 7 (Jul., 2000), pp. 1031-1040
DOI: 10.2307/3871253
Stable URL: http://www.jstor.org/stable/3871253
Page Count: 10
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Unique 33-kD Cysteine Proteinase Accumulates in Response to Larval Feeding in Maize Genotypes Resistant to Fall Armyworm and Other Lepidoptera
Preview not available

Abstract

Plants respond to insect feeding with a number of defense mechanisms. Using maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera, we have demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding. The abundance of the proteinase increased dramatically at the site of larval feeding after 1 hr of infestation and continued to accumulate for as long as 7 days. The 33-kD cysteine proteinase was most abundant in the yellow-green portion of the whorl-the normal site of larval feeding and the tissue that has the greatest inhibitory effect on larval growth in bioassays. The proteinase was expressed in response to wounding and was found in senescent leaves. It may be a marker of programmed cell death. The gene coding for the proteinase, mir1, has been transformed into Black Mexican Sweet callus. When larvae were reared on callus expressing the proteinase, their growth was inhibited ∼60 to 80%. The expression of a cysteine proteinase, instead of a cysteine proteinase inhibitor, may be a novel insect defense mechanism in plants.

Page Thumbnails

  • Thumbnail: Page 
[1031]
    [1031]
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033
  • Thumbnail: Page 
1034
    1034
  • Thumbnail: Page 
1035
    1035
  • Thumbnail: Page 
1036
    1036
  • Thumbnail: Page 
1037
    1037
  • Thumbnail: Page 
1038
    1038
  • Thumbnail: Page 
1039
    1039
  • Thumbnail: Page 
1040
    1040