Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Regulation of Abscisic Acid Signaling by the Ethylene Response Pathway in Arabidopsis

Majid Ghassemian, Eiji Nambara, Sean Cutler, Hiroshi Kawaide, Yuji Kamiya and Peter McCourt
The Plant Cell
Vol. 12, No. 7 (Jul., 2000), pp. 1117-1126
DOI: 10.2307/3871259
Stable URL: http://www.jstor.org/stable/3871259
Page Count: 10
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Regulation of Abscisic Acid Signaling by the Ethylene Response Pathway in Arabidopsis
Preview not available

Abstract

Although abscisic acid (ABA) is involved in a variety of plant growth and developmental processes, few genes that actually regulate the transduction of the ABA signal into a cellular response have been identified. In an attempt to determine negative regulators of ABA signaling, we identified mutants, designated enhanced response to ABA3 (era3), that increased the sensitivity of the seed to ABA. Biochemical and molecular analyses demonstrated that era3 mutants overaccumulate ABA, suggesting that era3 is a negative regulator of ABA synthesis. Subsequent genetic analysis of era3 alleles, however, showed that these are new alleles at the ETHYLENE INSENSITIVE2 locus. Other mutants defective in their response to ethylene also showed altered ABA sensitivity; from these results, we conclude that ethylene appears to be a negative regulator of ABA action during germination. In contrast, the ethylene response pathway positively regulates some aspects of ABA action that involve root growth in the absence of ethylene. We discuss the response of plants to ethylene and ABA in the context of how these two hormones could influence the same growth responses.

Page Thumbnails

  • Thumbnail: Page 
[1117]
    [1117]
  • Thumbnail: Page 
1118
    1118
  • Thumbnail: Page 
1119
    1119
  • Thumbnail: Page 
1120
    1120
  • Thumbnail: Page 
1121
    1121
  • Thumbnail: Page 
1122
    1122
  • Thumbnail: Page 
1123
    1123
  • Thumbnail: Page 
1124
    1124
  • Thumbnail: Page 
1125
    1125
  • Thumbnail: Page 
1126
    1126