Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

EMF1, A Novel Protein Involved in the Control of Shoot Architecture and Flowering in Arabidopsis

Dominique Aubert, Lingjing Chen, Yong-Hwan Moon, David Martin, Linda A. Castle, Chang-Hsien Yang and Z. Renee Sung
The Plant Cell
Vol. 13, No. 8 (Aug., 2001), pp. 1865-1875
DOI: 10.2307/3871324
Stable URL: http://www.jstor.org/stable/3871324
Page Count: 11
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
EMF1, A Novel Protein Involved in the Control of Shoot Architecture and Flowering in Arabidopsis
Preview not available

Abstract

Shoot architecture and flowering time in angiosperms depend on the balanced expression of a large number of flowering time and flower meristem identity genes. Loss-of-function mutations in the Arabidopsis EMBRYONIC FLOWER (EMF) genes cause Arabidopsis to eliminate rosette shoot growth and transform the apical meristem from indeterminate to determinate growth by producing a single terminal flower on all nodes. We have identified the EMF1 gene by positional cloning. The deduced polypeptide has no homology with any protein of known function except a putative protein in the rice genome with which EMF1 shares common motifs that include nuclear localization signals, P-loop, and LXXLL elements. Alteration of EMF1 expression in transgenic plants caused progressive changes in flowering time, shoot determinacy, and inflorescence architecture. EMF1 and its related sequence may belong to a new class of proteins that function as transcriptional regulators of phase transition during shoot development.

Page Thumbnails

  • Thumbnail: Page 
[1865]
    [1865]
  • Thumbnail: Page 
1866
    1866
  • Thumbnail: Page 
1867
    1867
  • Thumbnail: Page 
1868
    1868
  • Thumbnail: Page 
1869
    1869
  • Thumbnail: Page 
1870
    1870
  • Thumbnail: Page 
1871
    1871
  • Thumbnail: Page 
1872
    1872
  • Thumbnail: Page 
1873
    1873
  • Thumbnail: Page 
1874
    1874
  • Thumbnail: Page 
1875
    1875