Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The β-Subunit of the Arabidopsis G Protein Negatively Regulates Auxin-Induced Cell Division and Affects Multiple Developmental Processes

Hemayet Ullah, Jin-Gui Chen, Brenda Temple, Douglas C. Boyes, José M. Alonso, Keith R. Davis, Joseph R. Ecker and Alan M. Jones
The Plant Cell
Vol. 15, No. 2 (Feb., 2003), pp. 393-409
Stable URL: http://www.jstor.org/stable/3871873
Page Count: 17
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The β-Subunit of the Arabidopsis G Protein Negatively Regulates Auxin-Induced Cell Division and Affects Multiple Developmental Processes
Preview not available

Abstract

Plant cells respond to low concentrations of auxin by cell expansion, and at a slightly higher concentration, these cells divide. Previous work revealed that null mutants of the α-subunit of a putative heterotrimeric G protein (GPA1) have reduced cell division. Here, we show that this prototypical G protein complex acts mechanistically by controlling auxin sensitivity toward cell division. Loss-of-function G protein mutants have altered auxin-mediated cell division throughout development, especially during the auxin-induced formation of lateral and adventitious root primordia. Ectopic expression of the wild-type Gα-subunit phenocopies the Gβ mutants (auxin hypersensitivity), probably by sequestering the Gβγ-subunits, whereas overexpression of Gβ reduces auxin sensitivity and a constitutively active (Q222L) mutant Gα behaves like the wild type. These data are consistent with a model in which Gβγ acts as a negative regulator of auxin-induced cell division. Accordingly, basal repression of approximately one-third of the identified auxin-regulated genes (47 of 150 upregulated genes among 8300 quantitated) is lost in the Gβ transcript-null mutant. Included among these are genes that encode proteins proposed to control cell division in root primordia formation as well as several novel genes. These results suggest that although auxin-regulated cell division is not coupled directly by a G protein, the Gβ-subunit attenuates this auxin pathway upstream of the control of mRNA steady state levels.

Page Thumbnails

  • Thumbnail: Page 
[393]
    [393]
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409