Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Viral Virulence Protein Suppresses RNA Silencing-Mediated Defense but Upregulates the Role of MicroRNA in Host Gene Expression

Jun Chen, Wan Xiang Li, Daoxin Xie, Jin Rong Peng and Shou Wei Ding
The Plant Cell
Vol. 16, No. 5 (May, 2004), pp. 1302-1313
Stable URL: http://www.jstor.org/stable/3872089
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Viral Virulence Protein Suppresses RNA Silencing-Mediated Defense but Upregulates the Role of MicroRNA in Host Gene Expression
Preview not available

Abstract

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are processed by the ribonuclease Dicer from distinct precursors, double-stranded RNA (dsRNA) and hairpin RNAs, respectively, although either may guide RNA silencing via a similar complex. The siRNA pathway is antiviral, whereas an emerging role for miRNAs is in the control of development. Here, we describe a virulence factor encoded by turnip yellow mosaic virus, p69, which suppresses the siRNA pathway but promotes the miRNA pathway in Arabidopsis thaliana. p69 suppression of the siRNA pathway is upstream of dsRNA and is as effective as genetic mutations in A. thaliana genes involved in dsRNA production. Possibly as a consequence of p69 suppression, p69-expressing plants contained elevated levels of a Dicer mRNA and of miRNAs as well as a correspondingly enhanced miRNA-guided cleavage of two host mRNAs. Because p69-expressing plants exhibited disease-like symptoms in the absence of viral infection, our findings suggest a novel mechanism for viral virulence by promoting the miRNA-guided inhibition of host gene expression.

Page Thumbnails

  • Thumbnail: Page 
[1302]
    [1302]
  • Thumbnail: Page 
1303
    1303
  • Thumbnail: Page 
1304
    1304
  • Thumbnail: Page 
1305
    1305
  • Thumbnail: Page 
1306
    1306
  • Thumbnail: Page 
1307
    1307
  • Thumbnail: Page 
1308
    1308
  • Thumbnail: Page 
1309
    1309
  • Thumbnail: Page 
1310
    1310
  • Thumbnail: Page 
1311
    1311
  • Thumbnail: Page 
1312
    1312
  • Thumbnail: Page 
1313
    1313