Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Increased Dopamine Turnover in the Prefrontal Cortex Impairs Spatial Working Memory Performance in Rats and Monkeys

B. L. Murphy, A. F. T. Arnsten, P. S. Goldman-Rakic and R. H. Roth
Proceedings of the National Academy of Sciences of the United States of America
Vol. 93, No. 3 (Feb. 6, 1996), pp. 1325-1329
Stable URL: http://www.jstor.org/stable/38796
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Increased Dopamine Turnover in the Prefrontal Cortex Impairs Spatial Working Memory Performance in Rats and Monkeys
Preview not available

Abstract

The selective activation of the prefrontal cortical dopamine system by mild stress can be mimicked by anxiogenic β -carbolines such as FG7142. To investigate the functional relevance of elevated levels of dopamine turnover in the prefrontal cortex, the current study examined the effects of FG7142 on the performance of spatial working memory tasks in the rat and monkey. FG7142 selectively increased prefrontal cortical dopamine turnover in rats and significantly impaired performance on spatial working memory tasks in both rats and monkeys. Spatial discrimination, a task with similar motor and motivational demands (rats), or delayed response performance following zero-second delays (monkeys) was unaffected by FG7142. Further, biochemical analysis in rats revealed a significant positive correlation between dopamine turnover in the prefrontal cortex and cognitive impairment on the delayed alternation task. The cognitive deficits in both rats and monkeys were prevented by pretreatment with the benzodiazepine receptor antagonist, RO15-1788, which blocked the increase in dopamine turnover and by the dopamine receptor antagonists, haloperidol, clozapine, and SCH23390. These findings indicate that excessive dopamine activity in the prefrontal cortex is detrimental to cognitive functions mediated by the prefrontal cortex.

Page Thumbnails

  • Thumbnail: Page 
1325
    1325
  • Thumbnail: Page 
1326
    1326
  • Thumbnail: Page 
1327
    1327
  • Thumbnail: Page 
1328
    1328
  • Thumbnail: Page 
1329
    1329