Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Aspects of the Origin and Evolution of Non-Vertebrate Hemoglobins

Austen F. Riggs
American Zoologist
Vol. 31, No. 3 (1991), pp. 535-545
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/3883583
Page Count: 11
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Aspects of the Origin and Evolution of Non-Vertebrate Hemoglobins
Preview not available

Abstract

Hemoglobins, found in members of almost all invertebrate phyla, display an extraordinary diversity of form and function. Although some are intracellular with chains and assemblies similar in size to those of vertebrates, others are giant extracellular proteins with masses as large as 8,000 kilodaltons. Two very different strategies have evolved for the stabilization of these large molecules. The first is the formation of both intra- and inter-chain disulfide bonds that effectively immobilize segments of the protein, and the second is the evolution by gene duplication of multi-domain chains with from two to eighteen myoglobin-like, heme-containing domains in a single polypeptide that may be as large as ∼260 kilodaltons. The genes for vertebrate globins have a characteristic two-intron, three-exon structure. The gene encoding chain c of the hemoglobin of the earthworm Lumbricus terrestris has precisely the same organization and splice junction positions. This shows that these positions have been conserved for at least 600 million years, the estimated time of divergence of annelids and the ancestor to chordates. The gene encoding a hemoglobin (leghemoglobin) of higher plants shows exactly the same splice junctions as in the globin genes of vertebrates except that the middle exon is split by an additional intron which is believed to have been lost early in animal evolution. The occurrence of hemoglobins in diverse higher plants suggests that they might be present in all plants albeit at very low concentrations and perhaps serving an enzymatic function. Hemoglobin, broadly defined as a heme-containing protein capable of reversibel combination with oxygen, also occurs in bacteria and fungi. The discovery of a bacterial hemoglobin that is 26% identical with lupin leghemoglobin indicates a procaryotic origin. The possibility that hemoglobin may have evolved from a cytochrome is suggested by the presence of hemoglobins in the yeast, Candida, and the bacterium, Alcaligenes, that contain both heme and flavin. They must therefore have evolved by the fusion of the genes for two different proteins. However, the possible homology of the heme domains with plant or animal hemoglobins remains to be determined. The lactic dehydrogenase of yeast, cytochrome b2, is also a soluble flavoheme protein with a heme domain that is homologous with mammalian cytochrome b5. Globin may have evolved in part from a member of the cytochrome b5 family, but if so, the event must have occurred so early that only a borderline perhaps random correspondence of amino acid sequences remains.

Page Thumbnails

  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544
  • Thumbnail: Page 
545
    545