Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Origin of Metazoan Complexity: Porifera as Integrated Animals

Werner E. G. Müller
Integrative and Comparative Biology
Vol. 43, No. 1 (Feb., 2003), pp. 3-10
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/3884834
Page Count: 8
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Origin of Metazoan Complexity: Porifera as Integrated Animals
Preview not available

Abstract

Sponges [Porifera] are the phylogenetically oldest metazoan phylum still extant today; they share the closest relationship with the hypothetical common metazoan ancestor, the Urmetazoa. During the past 8 years cDNAs coding for proteins involved in cell-cell- and cell-tissue interaction have been cloned from sponges, primarily from Suberites domuncula and Geodia cydonium and their functions have been studied in vivo as well as in vitro. Also, characteristic elements of the extracellular matrix have been identified and cloned. Those data confirmed that all metazoan phyla originate from one ancestor, the Urmetazoa. The existence of cell adhesion molecules allowed the emergence of a colonial organism. However, for the next higher stage in evolution, individuation, two further innovations had to be formed: the immune- and the apoptotic system. Major defense pathways/molecules to prevent adverse effects against microbes/parasites have been identified in sponges. Furthermore, key molecules of the apoptotic pathway(s), e.g., the proapoptotic molecule comprising two death domains, the executing enzyme caspases, as well as the anti-apoptotic/cell survival proteins belonging to the Bcl-2 family have been identified and cloned from sponges. Based on these results-primarily obtained through a molecular biological approach-it is concluded that cell-cell- and cell-matrix adhesion systems were required for the transition to a colonial stage of organization, while the development of an immune system as well as of apoptotic processes were prerequisites for reaching the integrated stage. As the latter stage already exists in sponges, it is therefore likely that the hypothetical ancestor, the Urmetazoa, was also an "integrated colony."

Page Thumbnails

  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10