Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Water Relations of Honey Mesquite following Severing of Lateral Roots: Influence of Location and Amount of Subsurface Water

R. J. Ansley, P. W. Jacoby and G. J. Cuomo
Journal of Range Management
Vol. 43, No. 5 (Sep., 1990), pp. 436-442
DOI: 10.2307/3899008
Stable URL: http://www.jstor.org/stable/3899008
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Water Relations of Honey Mesquite following Severing of Lateral Roots: Influence of Location and Amount of Subsurface Water
Preview not available

Abstract

Location and amount of subsurface water may influence the degree of dependence of honey mesquite (Prosopis glandulosa Torr.) on shallow lateral roots to supply water. The objective of this study was to determine influence of lateral roots on water relations of honey mesquite on 2 sites which differed in location and amount of subsurface water. Lateral roots were severed with barriers placed to 1.5 m depth and completely surrounding individual trees in February 1985, during mesquite winter dormancy. Stomatal conductance and predawn leaf water potential were significantly reduced in root-severed trees during the following growing season (May-September) at both sites, but reduction was greater on the site with less subsurface water. Daytime leaf water potential was higher in root-severed than control trees on the site with less subsurface water, but not on the other site. By mid-summer 1986, no difference in stomatal conductance between treatments were detected at either site, yet daytime leaf water potential remained higher in root-severed than control trees at the site with less subsurface water. Predawn leaf water potential was greater in root-severed than control trees in 1986, which was a reversal of 1985 trends. Leaf abscission was not observed in either treatment during either growing season. These results suggest that: (1) when less subsurface water was available, trees were more dependent on lateral roots to supply water, (2) treatment effects were minimized by the second growing season following root severing, possibly from new root growth within or below the root barrier region, and (3) the lateral root system may play a significant role in regulating leaf water relations on sites with limited subsurface water.

Page Thumbnails

  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442