Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Effect of Steam Application on Cropland Weeds

Robert L. Kolberg and Lori J. Wiles
Weed Technology
Vol. 16, No. 1 (Jan. - Mar., 2002), pp. 43-49
Stable URL: http://www.jstor.org/stable/3988617
Page Count: 7
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Effect of Steam Application on Cropland Weeds
Preview not available

Abstract

Plot-scale field studies were conducted to evaluate the efficacy of steam for the control of cropland weeds in comparison with common herbicides. Weed densities, biomass, or emergence after treatment were measured. Steam (3,200 kg/ha, energy dosage equivalent to $890\ {\rm kJ}/{\rm m}^{2}$, speed of 0.8 m/s) and glyphosate (560 g ai/ha) gave similar control (> 90%) of seedling common lambsquarters and seedling redroot pigweed. Applied at heading, steam was comparable to glyphosate in reducing green foxtail biomass at heading 2 wk after application. Steam applied at a rate of 3,200 kg/ha significantly reduced weed biomass (mixed stand, treated at seedling stage) 9 wk after application compared with the control, whereas steam applied at a rate of 1,600 kg/ha (1.6 m/s) did not. Biomass of downy brome treated with steam was reduced more at anthesis than at the seedling growth stage. Emergence of common lambsquarters, redroot pigweed, and black nightshade was not affected by steam application. Amount of steam applied, weed species, and growth stage are key factors in determining control effectiveness.

Page Thumbnails

  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44
  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49