Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Evaluation of Corn (Zea mays L.) Yield-Loss Estimations by WeedSOFT® in the North Central Region

Andrew A. Schmidt, William G. Johnson, David A. Mortensen, Alex R. Martin, Anita Dille, Dallas E. Peterson, Corey Guza, James J. Kells, Ryan D. Lins, Chris M. Boerboom, Christy L. Sprague, Stevan Z. Knezevic, Fred W. Roeth, Case R. Medlin and Thomas T. Bauman
Weed Technology
Vol. 19, No. 4 (Oct. - Dec., 2005), pp. 1056-1064
Stable URL: http://www.jstor.org/stable/3989292
Page Count: 9
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Evaluation of Corn (Zea mays L.) Yield-Loss Estimations by WeedSOFT® in the North Central Region
Preview not available

Abstract

Field studies were conducted in 2000 and 2001 to evaluate corn yield-loss predictions generated by WeedSOFT, a computerized weed management decision aid. Conventional tillage practices were used to produce corn in 76-cm rows in Illinois, Indiana, Kansas, Michigan, Missouri, Nebraska, and Wisconsin. A total of 21 site-years from these seven states were evaluated in this study. At 4 wk after planting, weed densities and size, crop-growth stage, estimated weed-free yield, and environmental conditions at the time of application were entered into WeedSOFT to generate POST treatments ranked by percent maximum yield (PMY). POST treatments were chosen with yield losses ranging from 0 to 20%. Data were subjected to linear regression analysis by state and pooled over all states to determine the relationship between actual and predicted yield loss. A slope value equal to one implies perfect agreement between actual and predicted yield loss. Slope value estimates for Illinois and Missouri were equal to one. Actual yield losses were higher than the software predicted in Kansas and lower than predicted in Michigan, Nebraska, and Wisconsin. Slope value estimate from a data set containing all site years was equal to one. This research demonstrated that variability in yield-loss predictions occurred at sites that contained a high density of a single weed specie $(>100/{\rm m}^{2})$ regardless of its competitive index (CI); at sites with a predominant broadleaf weed with a CI greater than five, such as Palmer amaranth, giant ragweed, common sunflower, and common cocklebur; and at sites that experience moderate to severe drought stress.

Page Thumbnails

  • Thumbnail: Page 
1056
    1056
  • Thumbnail: Page 
1057
    1057
  • Thumbnail: Page 
1058
    1058
  • Thumbnail: Page 
1059
    1059
  • Thumbnail: Page 
1060
    1060
  • Thumbnail: Page 
1061
    1061
  • Thumbnail: Page 
1062
    1062
  • Thumbnail: Page 
1063
    1063
  • Thumbnail: Page 
1064
    1064