Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Dependence of 3 Nebraska Sandhills Warm-Season Grasses on Vesicular-Arbuscular Mycorrhizae

J. J. Brejda, D. H. Yocom, L. E. Moser and S. S. Waller
Journal of Range Management
Vol. 46, No. 1 (Jan., 1993), pp. 14-20
DOI: 10.2307/4002441
Stable URL: http://www.jstor.org/stable/4002441
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Dependence of 3 Nebraska Sandhills Warm-Season Grasses on Vesicular-Arbuscular Mycorrhizae
Preview not available

Abstract

Vesicular-arbuscular mycorrhizae (VAM) are rare or absent in actively eroding soils of the Sandhills. The objective of this study was to determine if 3 major Sandhills warm-season grasses used in reseeding eroded Sandhills sites are highly mycorrhizal dependent, and evaluate the response of VAM at different phosphorus (P) levels. In 2 greenhouse experiments, sand bluestem [Andropogon gerardii var. paucipilus (Nash) Fern.], switchgrass (Panicum virgatum L.), and prairie sandreed [Calamovilfa longifolia (Hook) Scribn.] were grown in steam-sterilized sand in pots and inoculated with either indigenous Sandhills VAM, Glomus deserticola, or noninoculated. In the second experiment, VAM inoculated and control plants were treated with 5 P levels ranging from 5.4 to 27.0 mg P $\text{pot}^{-1}$. Increasing levels of P fertilizer caused an initial increase, then dramatic decrease, in percentage colonization by Glomus deserticola but had no effect on percentage colonization by indigenous Sandhills VAM. Mycorrhizal inoculated plants had a greater number of tillers, greater shoot weight, root weight, tissue P concentration and percentage P recovered, and a lower root/-shoot ratio and P efficiency than noninoculated plants. Non-inoculated sand bluestem had significantly lower shoot P concentration but greater P efficiency over all P levels than any other grass-VAM treatment combination. Phosphorus fertilizer and VAM effects were often complementary at P levels up to 16.2 to 21.6 mg P $\text{pot}^{-1}$, with no change or a decrease in plant responses at higher P levels. These 3 major Sandhills warm-season grasses were highly mycorrhizal dependent. Successful reestablishment of these on eroded sites in the Sandhills may be greatly improved if soil reinoculation with VAM occurred prior to revegetation.

Page Thumbnails

  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20