Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Runoff and Erosion in Intercanopy Zones of Pinyon-Juniper Woodlands

Bradford P. Wilcox
Journal of Range Management
Vol. 47, No. 4 (Jul., 1994), pp. 285-295
DOI: 10.2307/4002549
Stable URL: http://www.jstor.org/stable/4002549
Page Count: 11
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Runoff and Erosion in Intercanopy Zones of Pinyon-Juniper Woodlands
Preview not available

Abstract

In semiarid pinyon-juniper environments, the principal mechanisms of redistribution of water, sediments, nutrients, and contaminants are runoff and erosion. To study the phenomena underlying these mechanisms, we established six $30\text{-}{\rm m}^{2}$ plots, in intercanopy zones, for monitoring over a 2-yr period (1991-1993). Two of the plots were severely disturbed; 4 were undisturbed. We measured the most runoff from these plots during mid summer (generated by intense thunderstorms) and late winter (from snowmelt and/or rain-on-snow). Runoff accounted for 10 to 28% of the water budget over the 2-yr period-a higher proportion than that observed in most other pinyon-juniper woodlands, which is probably explained by the smaller scale as well as the higher elevation of our study area. Runoff accounted for 16% of the summer water budget the first year, with above-average precipitation (and thereby higher soil moisture content) and 3% the second year, when precipitation was about average. Winter runoff was substantial both years as measured on the small scale of our study (no winter runoff was observed in the nearby stream channel). Interestingly, even though precipitation was lower the first winter, runoff was higher. This may be because snowmelt set in about 20 days earlier that year-while the soils were still thoroughly frozen, inhibiting infiltration. Differences between disturbed and undisturbed plots were most evident in the summer: both runoff and erosion were substantially higher from the disturbed plots. On the basis of our observations during this study, we suggest that the following hypotheses proposed about runoff and erosion in other semiarid landscapes are also true of pinyon-juniper woodlands: (1) Runoff amounts vary with scale: runoff decreases as the size of the contributing area increases and provides more opportunities for infiltration. (2) The infiltration capacity of soils is dynamic; it is closely tied to soil moisture content and/or soil frost conditions and is a major determinant of runoff amounts. (3) Soil erodibility follows an annual cycle; it is highest at the end of the freeze-thaw period of late winter and lowest at the end of the summer rainy season, when soils have been compacted by repeated rainfall.

Page Thumbnails

  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
Part of Sustainability