Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Collusion with Persistent Cost Shocks

Susan Athey and Kyle Bagwell
Econometrica
Vol. 76, No. 3 (May, 2008), pp. 493-540
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/40056455
Page Count: 48
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Collusion with Persistent Cost Shocks
Preview not available

Abstract

We consider a dynamic Bertrand game in which prices are publicly observed and each firm receives a privately observed cost shock in each period. Although cost shocks are independent across firms, within a firm costs follow a first-order Markov process. We analyze the set of collusive equilibria available to firms, emphasizing the best collusive scheme for the firms at the start of the game. In general, there is a trade-off between productive efficiency, whereby the low-cost firm serves the market in a given period, and high prices. We show that when costs are perfectly correlated over time within a firm, if the distribution of costs is log-concave and firms are sufficiently patient, then the optimal collusive scheme entails price rigidity: firms set the same price and share the market equally, regardless of their respective costs. When serial correlation of costs is imperfect, partial productive efficiency is optimal. For the case of two cost types, first-best collusion is possible if the firms are patient relative to the persistence of cost shocks, but not otherwise. We present numerical examples of first-best collusive schemes.

Page Thumbnails

  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504
  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512
  • Thumbnail: Page 
513
    513
  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540