Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Biogeochemical Responses to Mass Coral Spawning at the Great Barrier Reef: Effects on Respiration and Primary Production

Ronnie N. Glud, Bradley D. Eyre and Nicole Patten
Limnology and Oceanography
Vol. 53, No. 3 (May, 2008), pp. 1014-1024
Stable URL: http://www.jstor.org/stable/40058215
Page Count: 11
  • More info
  • Cite this Item
Biogeochemical Responses to Mass Coral Spawning at the Great Barrier Reef: Effects on Respiration and Primary Production
Preview not available

Abstract

Coral mass-spawning represents a spectacular annual, short-term, fertilization event of many oligotrophic reef communities. The spawning event in 2005 at Heron Island, Great Barrier Reef, was followed by an intense bloom of benthic dinoflagellates. Within a day from the first observed spawning, the primary production of the water column and the benthic compartment increased by factors of 4 and 2.5, respectively. However, the phototrophic communities were intensively grazed by macrozoans, and after 4-5 d the net photosynthesis (P) returned to the pre-spawning background level. The heterotrophic activity (R) mirrored the phototrophic response: a short term of elevated activity was followed by a rapid decline. However, the net autotrophic microbial communities exhibited a marked increase in the P : R ratio just after coral mass-spawning, indicating a preferential phototrophic recycling of nutrients rather than a microbial exploitation of the release of labile organic carbon. The heterotrophic and phototrophic activity of the benthic community exceeded the pelagic activity by ~2- and ~5-fold, respectively, underlining the importance of benthic activity for coral reef ecosystem function. Mass balance calculations indicated an efficient recycling of spawn-derived nitrogen (N) and carbon (C) within the benthic reef community. This was presumably facilitated by advective solute transport within the coarse, permeable, carbonate sand.

Page Thumbnails

  • Thumbnail: Page 
1014
    1014
  • Thumbnail: Page 
1015
    1015
  • Thumbnail: Page 
1016
    1016
  • Thumbnail: Page 
1017
    1017
  • Thumbnail: Page 
1018
    1018
  • Thumbnail: Page 
1019
    1019
  • Thumbnail: Page 
1020
    1020
  • Thumbnail: Page 
1021
    1021
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024