Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The High Light-Inducible Polypeptides Stabilize Trimeric Photosystem I Complex under High Light Conditions in Synechocystis PCC 6803

Qiang Wang, Saowarath Jantaro, Bingshe Lu, Waqar Majeed, Marian Bailey and Qingfang He
Plant Physiology
Vol. 147, No. 3 (Jul., 2008), pp. 1239-1250
Stable URL: http://www.jstor.org/stable/40065486
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The High Light-Inducible Polypeptides Stabilize Trimeric Photosystem I Complex under High Light Conditions in Synechocystis PCC 6803
Preview not available

Abstract

The high light-inducible polypeptides (HLIPs) are critical for survival under high light (HL) conditions in Synechocystis PCC 6803. In this article, we determined the localization of all four HLIPs in thylakoid protein complexes and examined effects of hli gene deletion on the photosynthetic protein complexes. The HliA and HliB proteins were found to be associated with trimeric photosystem I (PSI) complexes and the Slr1128 protein, whereas HliC was associated with PsaL and TMP14. The HliD was associated with partially dissociated PSI complexes. The PSI activities of the hli mutants were 3- to 4-fold lower than that of the wild type. The hli single mutants lost more than 30% of the PSI trimers after they were incubated in intermediate HL for 12 h. The reduction of PSI trimers were further augmented in these cells by the increase of light intensity. The quadruple hli deletion mutant contained less than one-half of PSI trimers following 12-h incubation in intermediate HL. It lost essentially all of the PSI trimers upon exposure to HL for 12 h. Furthermore, a mutant lacking both PSI trimers and Slr1128 showed growth defects similar to that of the quadruple hli deletion mutant under different light conditions. These results suggest that the HLIPs stabilize PSI trimers, interact with Slr1128, and protect cells under HL conditions.

Page Thumbnails

  • Thumbnail: Page 
1239
    1239
  • Thumbnail: Page 
1240
    1240
  • Thumbnail: Page 
1241
    1241
  • Thumbnail: Page 
1242
    1242
  • Thumbnail: Page 
1243
    1243
  • Thumbnail: Page 
1244
    1244
  • Thumbnail: Page 
1245
    1245
  • Thumbnail: Page 
1246
    1246
  • Thumbnail: Page 
1247
    1247
  • Thumbnail: Page 
1248
    1248
  • Thumbnail: Page 
1249
    1249
  • Thumbnail: Page 
1250
    1250