Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Arabidopsis DESPERADO/AtWBC11 Transporter Is Required for Cutin and Wax Secretion

David Panikashvili, Sigal Savaldi-Goldstein, Tali Mandel, Tamar Yifhar, Rochus B. Franke, René Höfer, Lukas Schreiber, Joanne Chory and Asaph Aharoni
Plant Physiology
Vol. 145, No. 4 (Dec., 2007), pp. 1345-1360
Stable URL: http://www.jstor.org/stable/40065777
Page Count: 16
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Arabidopsis DESPERADO/AtWBC11 Transporter Is Required for Cutin and Wax Secretion
Preview not available

Abstract

The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C₁₆₋₁₈ fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses.

Page Thumbnails

  • Thumbnail: Page 
1345
    1345
  • Thumbnail: Page 
1346
    1346
  • Thumbnail: Page 
1347
    1347
  • Thumbnail: Page 
1348
    1348
  • Thumbnail: Page 
1349
    1349
  • Thumbnail: Page 
1350
    1350
  • Thumbnail: Page 
1351
    1351
  • Thumbnail: Page 
1352
    1352
  • Thumbnail: Page 
1353
    1353
  • Thumbnail: Page 
1354
    1354
  • Thumbnail: Page 
1355
    1355
  • Thumbnail: Page 
1356
    1356
  • Thumbnail: Page 
1357
    1357
  • Thumbnail: Page 
1358
    1358
  • Thumbnail: Page 
1359
    1359
  • Thumbnail: Page 
1360
    1360