Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Cell Wall Proteome in the Maize Primary Root Elongation Zone. II. Region-Specific Changes in Water Soluble and Lightly Ionically Bound Proteins under Water Deficit

Jinming Zhu, Sophie Alvarez, Ellen L. Marsh, Mary E. LeNoble, In-Jeong Cho, Mayandi Sivaguru, Sixue Chen, Henry T. Nguyen, Yajun Wu, Daniel P. Schachtman and Robert E. Sharp
Plant Physiology
Vol. 145, No. 4 (Dec., 2007), pp. 1533-1548
Stable URL: http://www.jstor.org/stable/40065792
Page Count: 16
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Cell Wall Proteome in the Maize Primary Root Elongation Zone. II. Region-Specific Changes in Water Soluble and Lightly Ionically Bound Proteins under Water Deficit
Preview not available

Abstract

Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties. To gain a comprehensive understanding of how cell wall protein (CWP) composition changes in association with the differential growth responses to water deficit in different regions of the elongation zone, a proteomics approach was used to examine water soluble and loosely ionically bound CWPs. The results revealed major and predominantly region-specific changes in protein profiles between well-watered and water-stressed roots. In total, 152 water deficit-responsive proteins were identified and categorized into five groups based on their potential function in the cell wall: reactive oxygen species (ROS) metabolism, defense and detoxification, hydrolases, carbohydrate metabolism, and other/unknown. The results indicate that stress-induced changes in CWPs involve multiple processes that are likely to regulate the response of cell elongation. In particular, the changes in protein abundance related to ROS metabolism predicted an increase in apoplastic ROS production in the apical region of the elongation zone of water-stressed roots. This was verified by quantification of hydrogen peroxide content in extracted apoplastic fluid and by in situ imaging of apoplastic ROS levels. This response could contribute directly to the enhancement of wall loosening in this region. This large-scale proteomic analysis provides novel insights into the complexity of mechanisms that regulate root growth under water deficit conditions and highlights the spatial differences in CWP composition in the root elongation zone.

Page Thumbnails

  • Thumbnail: Page 
1533
    1533
  • Thumbnail: Page 
1534
    1534
  • Thumbnail: Page 
1535
    1535
  • Thumbnail: Page 
1536
    1536
  • Thumbnail: Page 
1537
    1537
  • Thumbnail: Page 
1538
    1538
  • Thumbnail: Page 
1539
    1539
  • Thumbnail: Page 
1540
    1540
  • Thumbnail: Page 
1541
    1541
  • Thumbnail: Page 
1542
    1542
  • Thumbnail: Page 
1543
    1543
  • Thumbnail: Page 
1544
    1544
  • Thumbnail: Page 
1545
    1545
  • Thumbnail: Page 
1546
    1546
  • Thumbnail: Page 
1547
    1547
  • Thumbnail: Page 
1548
    1548