Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Global Transcript Levels Respond to Small Changes of the Carbon Status during Progressive Exhaustion of Carbohydrates in Arabidopsis Rosettes

Björn Usadel, Oliver E. Bläsing, Yves Gibon, Kristin Retzlaff, Melanie Höhne, Manuela Günther and Mark Stitt
Plant Physiology
Vol. 146, No. 4 (Apr., 2008), pp. 1834-1861
Stable URL: http://www.jstor.org/stable/40065980
Page Count: 28
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Global Transcript Levels Respond to Small Changes of the Carbon Status during Progressive Exhaustion of Carbohydrates in Arabidopsis Rosettes
Preview not available

Abstract

The balance between the supply and utilization of carbon (C) changes continually. It has been proposed that plants respond in an acclimatory manner, modlfying C utilization to minimize harmful periods of C depletion. This hypothesis predicts that signaling events are initiated by small changes in C status. We analyzed the global transcriptional response to a gradual depletion of C during the night and an extension of the night, where C becomes severely limiting from 4 h onward. The response was interpreted using published datasets for sugar, light, and circadian responses. Hundreds of C-responsive genes respond during the night and others very early in the extended night. Pathway analysis reveals that biosynthesis and cellular growth genes are repressed during the night and genes involved in catabolism are induced during the first hours of the extended night. The C response is amplified by an antagonistic interaction with the clock. Light signaling is attenuated during the 24-h light/dark cycle. A model was developed that uses the response of 22K genes during a circadian cycle and their responses to C and light to predict global transcriptional responses during diurnal cycles of wild-type and starchless pgm mutant plants and an extended night in wild-type plants. By identlfying sets of genes that respond at different speeds and times during C depletion, our extended dataset and model aid the analysis of candidates for C signaling. This is illustrated for AKIN10 and four bZIP transcription factors, and sets of genes involved in trehalose signaling, protein turnover, and starch breakdown.

Page Thumbnails

  • Thumbnail: Page 
1834
    1834
  • Thumbnail: Page 
1835
    1835
  • Thumbnail: Page 
1836
    1836
  • Thumbnail: Page 
1837
    1837
  • Thumbnail: Page 
1838
    1838
  • Thumbnail: Page 
1839
    1839
  • Thumbnail: Page 
1840
    1840
  • Thumbnail: Page 
1841
    1841
  • Thumbnail: Page 
1842
    1842
  • Thumbnail: Page 
1843
    1843
  • Thumbnail: Page 
1844
    1844
  • Thumbnail: Page 
1845
    1845
  • Thumbnail: Page 
1846
    1846
  • Thumbnail: Page 
1847
    1847
  • Thumbnail: Page 
1848
    1848
  • Thumbnail: Page 
1849
    1849
  • Thumbnail: Page 
1850
    1850
  • Thumbnail: Page 
1851
    1851
  • Thumbnail: Page 
1852
    1852
  • Thumbnail: Page 
1853
    1853
  • Thumbnail: Page 
1854
    1854
  • Thumbnail: Page 
1855
    1855
  • Thumbnail: Page 
1856
    1856
  • Thumbnail: Page 
1857
    1857
  • Thumbnail: Page 
1858
    1858
  • Thumbnail: Page 
1859
    1859
  • Thumbnail: Page 
1860
    1860
  • Thumbnail: Page 
1861
    1861