Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Beta-Elements and Divided Congruences

Jens Hornbostel and Niko Naumann
American Journal of Mathematics
Vol. 129, No. 5 (Oct., 2007), pp. 1377-1402
Stable URL: http://www.jstor.org/stable/40068100
Page Count: 26
  • Read Online (Free)
  • Download ($24.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Beta-Elements and Divided Congruences
Preview not available

Abstract

The f-invariant is an injective homomorphism from the 2-line of the Adams-Novikov spectral sequence to a group which is closely related to divided congruences of elliptic modular forms. We compute the f-invariant for two infinite families of β-elements and explain the relation of the arithmetic of divided congruences with the Kervaire invariant one problem.

Page Thumbnails

  • Thumbnail: Page 
1377
    1377
  • Thumbnail: Page 
1378
    1378
  • Thumbnail: Page 
1379
    1379
  • Thumbnail: Page 
1380
    1380
  • Thumbnail: Page 
1381
    1381
  • Thumbnail: Page 
1382
    1382
  • Thumbnail: Page 
1383
    1383
  • Thumbnail: Page 
1384
    1384
  • Thumbnail: Page 
1385
    1385
  • Thumbnail: Page 
1386
    1386
  • Thumbnail: Page 
1387
    1387
  • Thumbnail: Page 
1388
    1388
  • Thumbnail: Page 
1389
    1389
  • Thumbnail: Page 
1390
    1390
  • Thumbnail: Page 
1391
    1391
  • Thumbnail: Page 
1392
    1392
  • Thumbnail: Page 
1393
    1393
  • Thumbnail: Page 
1394
    1394
  • Thumbnail: Page 
1395
    1395
  • Thumbnail: Page 
1396
    1396
  • Thumbnail: Page 
1397
    1397
  • Thumbnail: Page 
1398
    1398
  • Thumbnail: Page 
1399
    1399
  • Thumbnail: Page 
1400
    1400
  • Thumbnail: Page 
1401
    1401
  • Thumbnail: Page 
1402
    1402