If you need an accessible version of this item please contact JSTOR User Support

Modal Logic as Metalogic

Kosta Došen
Journal of Logic, Language, and Information
Vol. 1, No. 3 (1992), pp. 173-201
Published by: Springer
Stable URL: http://www.jstor.org/stable/40180019
Page Count: 29
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Modal Logic as Metalogic
Preview not available

Abstract

The goal of this paper is to show how modal logic may be conceived as recording the derived rules of a logical system in the system itself. This conception of modal logic was propounded by Dana Scott in the early seventies. Here, similar ideas are pursued in a context less classical man Scott's. First a family of propositional logical systems is considered, which is obtained by gradually adding structural rules to a variant of the nonassociative Lambek calculus. In this family one finds systems that correspond to the associative Lambek calculus, linear logic, relevant logics, BCK logic and intuitionistic logic. Above these basic systems, sequent systems parallel to the basic systems are constructed, which formalize various notions of derived rules for the basic systems. The deduction theorem is provable for the basic systems if, and only if, they are at least as strong as systems corresponding to linear logic, or BCK logic, depending on the language, and their deductive metalogic is not stronger than they are. However, though we do not always have the deduction theorem, we may always obtain a modal analogue of the deduction theorem for conservative modal extensions of the basic systems. Modal postulates which are necessary and sufficient for that are postulates of S4 plus modal postulates which mimic structural rules. For example, the modal postulates which Girard has recently considered in linear logic are necessary and sufficient for the modal analogue of the deduction theorem. All this may lead towards results about functional completeness in categories. When functional completeness, which is analogous to the deduction theorem, fails, we may perhaps envisage a modal analogue of functional completeness in a modal category, of which our original category is a full subcategory.

Page Thumbnails

  • Thumbnail: Page 
[173]
    [173]
  • Thumbnail: Page 
174
    174
  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201