Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Evidential Bilattice Logic and Lexical Inference

Andreas Schöter
Journal of Logic, Language, and Information
Vol. 5, No. 1 (Apr., 1996), pp. 65-105
Published by: Springer
Stable URL: http://www.jstor.org/stable/40180089
Page Count: 41
  • Download ($43.95)
  • Cite this Item
Evidential Bilattice Logic and Lexical Inference
Preview not available

Abstract

This paper presents an information-based logic that is applied to the analysis of entailment, implicature and presupposition in natural language. The logic is very fine-grained and is able to make distinctions that are outside the scope of classical logic. It is independently motivated by certain properties of natural human reasoning, namely partiality, paraconsistency, relevance, and defeasibility: once these are accounted for, the data on implicature and presupposition comes quite naturally. The logic is based on the family of semantic spaces known as bilattices, originally proposed by Ginsberg (1988), and used extensively by Fitting (1989, 1992). Specifically, the logic is based on a subset of bilattices that I call evidential bilattices, constructed as the Cartesian product of certain algebras with themselves. The specific details of the epistemic agent approach of the logical system is derived from the work of Belnap (1975, 1977), augmented by the use of evidential links for inferencing. An important property of the system is that it has been implemented using an extension of Fitting's work on bilattice logic programming (1989, 1991) to build a model-based inference engine for the augmented Belnap logic. This theorem prover is very efficient for a reasonably wide range of inferences.

Page Thumbnails

  • Thumbnail: Page 
65
    65
  • Thumbnail: Page 
66
    66
  • Thumbnail: Page 
67
    67
  • Thumbnail: Page 
68
    68
  • Thumbnail: Page 
69
    69
  • Thumbnail: Page 
70
    70
  • Thumbnail: Page 
71
    71
  • Thumbnail: Page 
72
    72
  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105