Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Congruence Coherent Symmetrie Extended de Morgan Algebras

T. S. Blyth and Jie Fang
Studia Logica: An International Journal for Symbolic Logic
Vol. 87, No. 1 (Oct., 2007), pp. 51-63
Published by: Springer
Stable URL: http://www.jstor.org/stable/40210798
Page Count: 13
  • Download ($43.95)
  • Cite this Item
Congruence Coherent Symmetrie Extended de Morgan Algebras
Preview not available

Abstract

An algebra A is said to be congruence coherent if every subalgebra of A that contains a class of some congruence $\vartheta $ on A is a union of $\vartheta $ -classes. This property has been investigated in several varieties of lattice-based algebras. These include, for example, de Morgan algebras, -algebras, double -algebras, and double MS-algebras. Here we determine precisely when the property holds in the class of Symmetrie extended de Morgan algebras.

Page Thumbnails

  • Thumbnail: Page 
[51]
    [51]
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57
  • Thumbnail: Page 
58
    58
  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
  • Thumbnail: Page 
61
    61
  • Thumbnail: Page 
62
    62
  • Thumbnail: Page 
63
    63