Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Congruence Coherent Symmetrie Extended de Morgan Algebras

T. S. Blyth and Jie Fang
Studia Logica: An International Journal for Symbolic Logic
Vol. 87, No. 1 (Oct., 2007), pp. 51-63
Published by: Springer
Stable URL: http://www.jstor.org/stable/40210798
Page Count: 13
  • Get Access
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Congruence Coherent Symmetrie Extended de Morgan Algebras
Preview not available

Abstract

An algebra A is said to be congruence coherent if every subalgebra of A that contains a class of some congruence $\vartheta $ on A is a union of $\vartheta $ -classes. This property has been investigated in several varieties of lattice-based algebras. These include, for example, de Morgan algebras, -algebras, double -algebras, and double MS-algebras. Here we determine precisely when the property holds in the class of Symmetrie extended de Morgan algebras.

Page Thumbnails

  • Thumbnail: Page 
[51]
    [51]
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57
  • Thumbnail: Page 
58
    58
  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
  • Thumbnail: Page 
61
    61
  • Thumbnail: Page 
62
    62
  • Thumbnail: Page 
63
    63