Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Local Linearization Method for Numerical Integration of Delay Differential Equations

J. C. Jimenez, L. M. Pedroso, F. Carbonell and V. Hernandez
SIAM Journal on Numerical Analysis
Vol. 44, No. 6 (2006), pp. 2584-2609
Stable URL: http://www.jstor.org/stable/40232908
Page Count: 26
  • Subscribe ($19.50)
  • Cite this Item
Local Linearization Method for Numerical Integration of Delay Differential Equations
Preview not available

Abstract

In this paper, a new approach for the numerical computation of delay differential equations (DDEs) is introduced. The essential idea consists of obtaining numerical integrators that use a code expressly developed for linear DDEs, in contrast with the conventional approach of using a code for ordinary differential equations. Specifically, two numerical schemes of this new class of integrators are proposed and their numerical viability analyzed. It includes the estimation of the convergence rate, the evaluation of the computational cost of the schemes, and a simulation study. It is proved that these one-step explicit integrators converge uniformly with order two to the solution of nonlinear DDEs and are able to integrate stiff equations in a satisfactory way with low computational cost.

Page Thumbnails

  • Thumbnail: Page 
2584
    2584
  • Thumbnail: Page 
2585
    2585
  • Thumbnail: Page 
2586
    2586
  • Thumbnail: Page 
2587
    2587
  • Thumbnail: Page 
2588
    2588
  • Thumbnail: Page 
2589
    2589
  • Thumbnail: Page 
2590
    2590
  • Thumbnail: Page 
2591
    2591
  • Thumbnail: Page 
2592
    2592
  • Thumbnail: Page 
2593
    2593
  • Thumbnail: Page 
2594
    2594
  • Thumbnail: Page 
2595
    2595
  • Thumbnail: Page 
2596
    2596
  • Thumbnail: Page 
2597
    2597
  • Thumbnail: Page 
2598
    2598
  • Thumbnail: Page 
2599
    2599
  • Thumbnail: Page 
2600
    2600
  • Thumbnail: Page 
2601
    2601
  • Thumbnail: Page 
2602
    2602
  • Thumbnail: Page 
2603
    2603
  • Thumbnail: Page 
2604
    2604
  • Thumbnail: Page 
2605
    2605
  • Thumbnail: Page 
2606
    2606
  • Thumbnail: Page 
2607
    2607
  • Thumbnail: Page 
2608
    2608
  • Thumbnail: Page 
2609
    2609