Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Coexistence of Succulent Tree Aloes: Partitioning of Bird Pollinators by Floral Traits and Flowering Phenology

Christo Botes, Steven D. Johnson and Richard M. Cowling
Oikos
Vol. 117, No. 6 (Jun., 2008), pp. 875-882
Published by: Wiley on behalf of Nordic Society Oikos
Stable URL: http://www.jstor.org/stable/40235474
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Coexistence of Succulent Tree Aloes: Partitioning of Bird Pollinators by Floral Traits and Flowering Phenology
Preview not available

Abstract

Coexistence among species that lack genetic barriers to hybridization usually depends on pre-mating isolating barriers. It has been difficult to explain coexistence among African Aloe species because they readily hybridize, often flower simultaneously and are mostly bird-pollinated. Here we show that co-flowering aloes in a succulent thicket community in South Africa partition the fauna of flower-visiting birds. Aloe species with small amounts of concentrated nectar in long corolla tubes were pollinated primarily by long-billed sunbirds. These species co-flowered with species with large amounts of dilute nectar in short corolla tubes which were pollinated primarily by short-billed, generalist nectarivores. Aloe species which share pollinators tend to have divergent flowering times and differences in pollen placement on birds. Without these isolating barriers, genetic dissolution of sympatric Aloe species would be likely.

Page Thumbnails

  • Thumbnail: Page 
875
    875
  • Thumbnail: Page 
876
    876
  • Thumbnail: Page 
877
    877
  • Thumbnail: Page 
878
    878
  • Thumbnail: Page 
879
    879
  • Thumbnail: Page 
880
    880
  • Thumbnail: Page 
881
    881
  • Thumbnail: Page 
882
    882