Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Effect of Space in Plant-Animal Mutualistic Networks: Insights from a Simulation Study

Juan M. Morales and Diego P. Vázquez
Oikos
Vol. 117, No. 9 (Sep., 2008), pp. 1362-1370
Published by: Wiley on behalf of Nordic Society Oikos
Stable URL: http://www.jstor.org/stable/40235531
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Effect of Space in Plant-Animal Mutualistic Networks: Insights from a Simulation Study
Preview not available

Abstract

The topology of plant-animal mutualistic networks has the potential to determine the ecological and evolutionary dynamics of interacting species. Many mechanisms have been proposed as explanations of observed network patterns; however, the fact that plant-animal interactions are inherendy spatial has so far been ignored. Using a simulation model of frugivorous birds foraging in spatially explicit landscapes we evaluated how plant distribution and the scale of bird movement decisions influenced species interaction probabilities and the resulting network properties. Spatial aggregation and limited animal mobility restricted encounter probabilities, so that the distribution of animal visits per plant deviated strongly from the binomial distribution expected for a well-mixed system. Lack of mixing in turn resulted in a strong decrease in network connectance, a weak decrease in nestedness, stronger interactions, greater strength asymmetry and the unexpected presence/absence of some interactions. Our results suggest that spatial processes may contribute substantially to structure plant-animal mutualistic networks.

Page Thumbnails

  • Thumbnail: Page 
1362
    1362
  • Thumbnail: Page 
1363
    1363
  • Thumbnail: Page 
1364
    1364
  • Thumbnail: Page 
1365
    1365
  • Thumbnail: Page 
1366
    1366
  • Thumbnail: Page 
1367
    1367
  • Thumbnail: Page 
1368
    1368
  • Thumbnail: Page 
1369
    1369
  • Thumbnail: Page 
1370
    1370