Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Bets and Boundaries: Assigning Probabilities to Imprecisely Specified Events

Peter Milne
Studia Logica: An International Journal for Symbolic Logic
Vol. 90, No. 3, Vagueness (Dec., 2008), pp. 425-453
Published by: Springer
Stable URL: http://www.jstor.org/stable/40269018
Page Count: 29
  • Get Access
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Bets and Boundaries: Assigning Probabilities to Imprecisely Specified Events
Preview not available

Abstract

Uncertainty and vagueness/imprecision are not the same: one can be certain about events described using vague predicates and about imprecisely specified events, just as one can be uncertain about precisely specified events. Exactly because of this, a question arises about how one ought to assign probabilities to imprecisely specified events in the case when no possible available evidence will eradicate the imprecision (because, say, of the limits of accuracy of a measuring device). Modelling imprecision by rough sets over an approximation space presents an especially tractable case to help get one's bearings. Two solutions present themselves: the first takes as upper and lower probabilities of the event X the (exact) probabilities assigned X's upper and lower rough-set approximations; the second, motivated both by formal considerations and by a simple betting argument, is to treat X's rough-set approximation as a conditional event and assign to it a point- valued (conditional) probability. With rough sets over an approximation space we get a lot of good behaviour. For example, in the first construction mentioned the lower probabilities are n-monotone, for every n ϵ ℕ⁺ When we examine other models of approximation/imprecision/vagueness, and in particular, proximity spaces, we lose a lot of that good behaviour. In the literature there is not (even) agreement on the definition of upper and lower approximations for events (subsets) in the underlying domain. Betting considerations suggest one choice and, again, ways to assign upper and lower and point-valued probabilities, but nothing works well.

Page Thumbnails

  • Thumbnail: Page 
[425]
    [425]
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445
  • Thumbnail: Page 
446
    446
  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453