Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Regular Surface Patterning of Peatlands: Confronting Theory with Field Data

Maarten B. Eppinga, Max Rietkerk, Wiebe Borren, Elena D. Lapshina, Wladimir Bleuten and Martin J. Wassen
Ecosystems
Vol. 11, No. 4 (Jun., 2008), pp. 520-536
Published by: Springer
Stable URL: http://www.jstor.org/stable/40296305
Page Count: 17
  • Download ($43.95)
  • Cite this Item
Regular Surface Patterning of Peatlands: Confronting Theory with Field Data
Preview not available

Abstract

Regular spatial patterns of sharply bounded ridges and hollows are frequently observed in peatlands and ask for an explanation in terms of underlying structuring processes. Simulation models suggest that spatial regularity of peatland patterns could be driven by an evapotranspiration-induced scale-dependent feedback (locally positive, longer-range negative) between ridge vegetation and nutrient availability. The sharp boundaries between ridges and hollows could be induced by a positive feedback between net rate of peat formation and acrotelm thickness. Theory also predicts how scale-dependent and positive feedbacks drive underlying patterns in nutrients, hydrology, and hydrochemistry, but these predictions have not yet been tested empirically. The aim of this study was to provide an empirical test for the theoretical predictions; therefore, we measured underlying patterns in nutrients, hydrology, and hydrochemistry across a maze-patterned peatland in the Great Vasyugan Bog, Siberia. The field data corroborated predicted patterns as induced by scaledependent feedback; nutrient concentrations were higher on ridges than in hollows. Moreover, diurnal dynamics in water table level clearly corresponded to evapotranspiration and showed that water levels in two ridges were lower than in the hollow in between. Also, the data on hydrochemistry suggested that evapotranspiration rates were higher on ridges. The bimodal frequency distribution in acrotelm thickness indicated sharp boundaries between ridges and hollows, supporting the occurrence of a positive feedback. Moreover, nutrient content in plant tissue was most strongly associated with acrotelm thickness, supporting the view that positive feedback further amplifies ridge-hollow differences in nutrient status. Our measurements are consistent with the hypothesis that the combination of scale-dependent and positive feedback induces peatland patterning.

Page Thumbnails

  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536