Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Multidimensional Operator Multipliers

K. Juschenko, I. G. Todorov and L. Turowska
Transactions of the American Mathematical Society
Vol. 361, No. 9 (Sep., 2009), pp. 4683-4720
Stable URL: http://www.jstor.org/stable/40302715
Page Count: 38
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Multidimensional Operator Multipliers
Preview not available

Abstract

We introduce multidimensional Schur multipliers and characterise them, generalising well-known results by Grothendieck and Peller. We define a multidimensional version of the two-dimensional operator multipliers studied recently by Kissin and Shulman. The multidimensional operator multipliers are defined as elements of the minimal tensor product of several $C^* $ -algebras satisfying certain boundedness conditions. In the case of commutative $C^* $ -algebras, the multidimensional operator multipliers reduce to continuous multidimensional Schur multipliers. We show that the multipliers with respect to some given representations of the corresponding $C^* $ -algebras do not change if the representations are replaced by approximately equivalent ones. We establish a non-commutative and multidimensional version of the characterisations by Grothendieck and Peller which shows that universal operator multipliers can be obtained as certain weak limits of elements of the algebraic tensor product of the corresponding C*-algebras.

Page Thumbnails

  • Thumbnail: Page 
4683
    4683
  • Thumbnail: Page 
4684
    4684
  • Thumbnail: Page 
4685
    4685
  • Thumbnail: Page 
4686
    4686
  • Thumbnail: Page 
4687
    4687
  • Thumbnail: Page 
4688
    4688
  • Thumbnail: Page 
4689
    4689
  • Thumbnail: Page 
4690
    4690
  • Thumbnail: Page 
4691
    4691
  • Thumbnail: Page 
4692
    4692
  • Thumbnail: Page 
4693
    4693
  • Thumbnail: Page 
4694
    4694
  • Thumbnail: Page 
4695
    4695
  • Thumbnail: Page 
4696
    4696
  • Thumbnail: Page 
4697
    4697
  • Thumbnail: Page 
4698
    4698
  • Thumbnail: Page 
4699
    4699
  • Thumbnail: Page 
4700
    4700
  • Thumbnail: Page 
4701
    4701
  • Thumbnail: Page 
4702
    4702
  • Thumbnail: Page 
4703
    4703
  • Thumbnail: Page 
4704
    4704
  • Thumbnail: Page 
4705
    4705
  • Thumbnail: Page 
4706
    4706
  • Thumbnail: Page 
4707
    4707
  • Thumbnail: Page 
4708
    4708
  • Thumbnail: Page 
4709
    4709
  • Thumbnail: Page 
4710
    4710
  • Thumbnail: Page 
4711
    4711
  • Thumbnail: Page 
4712
    4712
  • Thumbnail: Page 
4713
    4713
  • Thumbnail: Page 
4714
    4714
  • Thumbnail: Page 
4715
    4715
  • Thumbnail: Page 
4716
    4716
  • Thumbnail: Page 
4717
    4717
  • Thumbnail: Page 
4718
    4718
  • Thumbnail: Page 
4719
    4719
  • Thumbnail: Page 
4720
    4720