Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genes with Social Effects Are Expected to Harbor More Sequence Variation within and between Species

Timothy A. Linksvayer and Michael J. Wade
Evolution
Vol. 63, No. 7 (Jul., 2009), pp. 1685-1696
Stable URL: http://www.jstor.org/stable/40306247
Page Count: 12
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genes with Social Effects Are Expected to Harbor More Sequence Variation within and between Species
Preview not available

Abstract

The equilibrium sequence diversity of genes within a population and the rate of sequence divergence between populations or species depends on a variety of factors, including expression pattern, mutation rate, nature of selection, random drift, and mating system. Here, we extend population genetic theory developed for maternal-effect genes to predict the equilibrium polymorphism within species and sequence divergence among species for genes with social effects on fitness. We show how the fitness effects of genes, mating system, and genetic system affect predicted gene polymorphism. We find that, because genes with indirect social effects on fitness effectively experience weaker selection, they are expected to harbor higher levels of polymorphism relative to genes with direct fitness effects. The relative increase in polymorphism is proportional to the inverse of the genetic relatedness between individuals expressing the gene and their social partners that experience the fitness effects of the gene. We find a similar pattern of more rapid divergence between populations or species for genes with indirect social effects relative to genes with direct effects. We focus our discussion on the social insects, organisms with diverse indirect genetic effects, mating and genetic systems, and we suggest specific examples for testing our predictions with emerging sociogenomic tools.

Page Thumbnails

  • Thumbnail: Page 
1685
    1685
  • Thumbnail: Page 
1686
    1686
  • Thumbnail: Page 
1687
    1687
  • Thumbnail: Page 
1688
    1688
  • Thumbnail: Page 
1689
    1689
  • Thumbnail: Page 
1690
    1690
  • Thumbnail: Page 
1691
    1691
  • Thumbnail: Page 
1692
    1692
  • Thumbnail: Page 
1693
    1693
  • Thumbnail: Page 
1694
    1694
  • Thumbnail: Page 
1695
    1695
  • Thumbnail: Page 
1696
    1696