Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Test and Review of the Role of Effective Population Size on Experimental Sexual Selection Patterns

Rhonda R. Snook, Lena Briistle and Jon Slate
Evolution
Vol. 63, No. 7 (Jul., 2009), pp. 1923-1933
Stable URL: http://www.jstor.org/stable/40306266
Page Count: 11
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Test and Review of the Role of Effective Population Size on Experimental Sexual Selection Patterns
Preview not available

Abstract

Experimental evolution, particularly experimental sexual selection in which sexual selection strength is manipulated by altering the mating system, is an increasingly popular method for testing evolutionary theory. Concerns have arisen regarding genetic diversity variation across experimental treatments: differences in the number and sex ratio of breeders (effective population size; $N_e $ ) and the potential for genetic hitchhiking, both of which may cause different levels of genetic variation between treatments. Such differences may affect the selection response and confound interpretation of results. Here we use both census-based estimators and molecular marker-based estimates to empirically test how experimental evolution of sexual selection in Drosophila pseudoobscura impacts N e and autosomal genetic diversity. We also consider effects of treatment on X-linked A/e s, which have previously been ignored. Molecular autosomal marker-based estimators indicate that neither N e nor genetic diversity differs between treatments experiencing different sexual selection intensities; thus observed evolutionary responses reflect selection rather than any confounding effects of experimental design. Given the increasing number of studies on experimental sexual selection, we also review the census $N_e S$ of other experimental systems, calculate X-linked $N_e S$ and compare how different studies have dealt with the issues of inbreeding, genetic drift, and genetic hitchhiking to help inform future designs.

Page Thumbnails

  • Thumbnail: Page 
1923
    1923
  • Thumbnail: Page 
1924
    1924
  • Thumbnail: Page 
1925
    1925
  • Thumbnail: Page 
1926
    1926
  • Thumbnail: Page 
1927
    1927
  • Thumbnail: Page 
1928
    1928
  • Thumbnail: Page 
1929
    1929
  • Thumbnail: Page 
1930
    1930
  • Thumbnail: Page 
1931
    1931
  • Thumbnail: Page 
1932
    1932
  • Thumbnail: Page 
1933
    1933