Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Microbial Extracellular Polymeric Substances (EPS) in Fresh Water Sediments

Sabine Ulrike Gerbersdorf, Bernhard Westrich and David M. Paterson
Microbial Ecology
Vol. 58, No. 2 (Aug., 2009), pp. 334-349
Published by: Springer
Stable URL: http://www.jstor.org/stable/40343454
Page Count: 16
  • Download ($43.95)
  • Cite this Item
Microbial Extracellular Polymeric Substances (EPS) in Fresh Water Sediments
Preview not available

Abstract

Microbially produced extracellular polymeric substances (EPS) have been linked with many important ecological functions in natural sediments; yet, most information has been derived from marine systems. The present paper is the first comprehensive study on EPS (i.e., carbohydrates and proteins) dynamics in riverine sediments addressing spatial (six reservoirs and four groyne fields across three European rivers), temporal (all seasons in 2003-2005), and vertical (over a 50-cm sediment depth transect) pattern. The variation in hydrodynamic regime found in the reservoirs and groyne fields was reflected in the biomass and composition of the benthic microorganisms that produce EPS. The microphytobenthic communities consisted mainly of diatoms and a higher algal biomass (up to 248 μg g₊¹ dry weight, DW) seemed to be indicative for higher amounts of secreted colloidal carbohydrates. Consequently, the model proposed by Underwood and Smith (1998) for the relation chlorophyll-colloidal carbohydrates was also applicable for upper riverine sediment layers. The close relation between algal biomass and bacterial cell counts (10₈-10₉ cells g₊¹ DW) supports the idea of bacterial use of the secreted EPS. However, the data also suggest a contribution to the EPS pool through bacterial secretion of proteins/extracellular enzymes and possibly carbohydrates. Over depth, the relationships between microorganisms and EPS became increasingly decoupled along with increasing ratios of bound (refractory) to colloidal (labile) EPS. These data suggest fresh production of polymeric substances in upper sediment layers and mainly accumulation of refractory, biodegraded material in deeper layers. The high contents of EPS colloidal and bound carbohydrates (0.1-1.8 and 1.3-6.7 mg g₊¹ DW, respectively) and EPS proteins (0.4-12.9 mg g₊¹ DW) at the freshwater study sites might indicate an important role in sediment ecology.

Page Thumbnails

  • Thumbnail: Page 
[334]
    [334]
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349