Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Prioritizing Conservation Activities Using Reserve Site Selection Methods and Population Viability Analysis

Stephen C. Newbold and Juha Siikamäki
Ecological Applications
Vol. 19, No. 7 (Oct., 2009), pp. 1774-1790
Published by: Wiley
Stable URL: http://www.jstor.org/stable/40346287
Page Count: 17
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Prioritizing Conservation Activities Using Reserve Site Selection Methods and Population Viability Analysis
Preview not available

Abstract

In recent years a large literature on reserve site selection (RSS) has developed at the interface between ecology, operations research, and environmental economics. Reserve site selection models use numerical optimization techniques to select sites for a network of nature reserves for protecting biodiversity. In this paper, we develop a population viability analysis (PVA) model for salmon and incorporate it into an RSS framework for prioritizing conservation activities in upstream watersheds. We use spawner return data for three closely related salmon stocks in the upper Columbia River basin and estimates of the economic costs of watershed protection from NOAA to illustrate the framework. We compare the relative cost-effectiveness of five alternative watershed prioritization methods, based on various combinations of biological and economic information. Prioritization based on biological benefit-economic cost comparisons and accounting for spatial interdependencies among watersheds substantially outperforms other more heuristic methods. When using this bestperforming prioritization method, spending 10% of the cost of protecting all upstream watersheds yields 79% of the biological benefits (increase in stock persistence) from protecting all watersheds, compared to between 20% and 64% for the alternative methods. We also find that prioritization based on either costs or benefits alone can lead to severe reductions in costeffectiveness.

Page Thumbnails

  • Thumbnail: Page 
1774
    1774
  • Thumbnail: Page 
1775
    1775
  • Thumbnail: Page 
1776
    1776
  • Thumbnail: Page 
1777
    1777
  • Thumbnail: Page 
1778
    1778
  • Thumbnail: Page 
1779
    1779
  • Thumbnail: Page 
1780
    1780
  • Thumbnail: Page 
1781
    1781
  • Thumbnail: Page 
1782
    1782
  • Thumbnail: Page 
1783
    1783
  • Thumbnail: Page 
1784
    1784
  • Thumbnail: Page 
1785
    1785
  • Thumbnail: Page 
1786
    1786
  • Thumbnail: Page 
1787
    1787
  • Thumbnail: Page 
1788
    1788
  • Thumbnail: Page 
1789
    1789
  • Thumbnail: Page 
1790
    1790