Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Population Dynamics in a Cyclic Environment: Consequences of Cyclic Food Abundance on Tawny Owl Reproduction and Survival

Patrik Karell, Kari Ahola, Teuvo Karstinen, Aniko Zolei and Jon E. Brommer
Journal of Animal Ecology
Vol. 78, No. 5 (Sep., 2009), pp. 1050-1062
Stable URL: http://www.jstor.org/stable/40405841
Page Count: 13
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Population Dynamics in a Cyclic Environment: Consequences of Cyclic Food Abundance on Tawny Owl Reproduction and Survival
Preview not available

Abstract

1. Understanding which factors regulate population dynamics may help us to understand how a population would respond to environmental change, and why some populations are declining. 2. In southern Finland, vole abundance shows a three-phased cycle of low, increase and decrease phases, but these have been fading out in recent years. During five such cycles (1981-1995), all tawny owls Strix aluco were censused in a 250-km² study area, and their reproduction and survival were monitored. 3. Males and females showed similar dynamics, but experienced breeders recruited more offspring and had higher survival than first breeders. Offspring recruitment, but not survival of breeding individuals varied in accordance with vole abundance. 4. The population's numerical response to prey abundance was primarily due to first-breeding individuals entering the population in the increase phase when immigration was the highest. Firstbreeding birds were younger, but experienced breeders were older in more favourable vole years. 5. A stage-specific matrix population model integrating survival and fecundity showed that, despite obvious variation in fecundity between vole cycle phases, this variation had limited importance for overall tawny owl population dynamics, but that the survival of experienced breeders during the low phase is most important for population growth. 6. Model and data agreed that the vole cycle drives the dynamics of this avian predator by limiting the recruitment of new breeders during the low phase. Population dynamics hence differ not only from the classic example of the species in a more temperate region in the UK where the number of territories is stable across years, but also from the dynamics of other avian vole predators in Fennoscandia where the recurring crash in vole abundance drastically lowers adult survival thereby creating vacancies.

Page Thumbnails

  • Thumbnail: Page 
[1050]
    [1050]
  • Thumbnail: Page 
1051
    1051
  • Thumbnail: Page 
1052
    1052
  • Thumbnail: Page 
1053
    1053
  • Thumbnail: Page 
1054
    1054
  • Thumbnail: Page 
1055
    1055
  • Thumbnail: Page 
1056
    1056
  • Thumbnail: Page 
1057
    1057
  • Thumbnail: Page 
1058
    1058
  • Thumbnail: Page 
1059
    1059
  • Thumbnail: Page 
1060
    1060
  • Thumbnail: Page 
1061
    1061
  • Thumbnail: Page 
1062
    1062