Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Influence of Soil Moisture, Temperature, and Compaction on the Germination and Emergence of Downy Brome (Bromus tectorum)

D. C. Thill, R. D. Schirman and A. P. Appleby
Weed Science
Vol. 27, No. 6 (Nov., 1979), pp. 625-630
Stable URL: http://www.jstor.org/stable/4043082
Page Count: 6
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Influence of Soil Moisture, Temperature, and Compaction on the Germination and Emergence of Downy Brome (Bromus tectorum)
Preview not available

Abstract

The influence of soil moisture stress, temperature, and bulk density on the germination and seedling emergence of downy brome (Bromus tectorum L.) was investigated in the laboratory. Reductions in soil matric potential from -2 to -16 bars markedly reduced the percentage and rate of emergence. Seedling emergence was better at constant than at alternating temperatures. At high matric potentials, the rate of emergence was accelerated by warmer soil temperature (20 C), while at very low matric potentials, the percentage and rate of seedling emergence were least restricted at cooler temperatures (10 and 15 C). Soil matric potential did not influence the percentage or rate of emergence of seedlings grown from seed lots harvested during climatologically diverse years. Seedling emergence but not germination was inhibited by increased levels of soil compaction. Soil compaction times moisture interaction were not observed, as measured by final seedling emergence.

Page Thumbnails

  • Thumbnail: Page 
625
    625
  • Thumbnail: Page 
626
    626
  • Thumbnail: Page 
627
    627
  • Thumbnail: Page 
628
    628
  • Thumbnail: Page 
629
    629
  • Thumbnail: Page 
630
    630