Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Muscle Hypertrophy Driven by Myostatin Blockade Does Not Require Stem/Precursor-Cell Activity

Helge Amthor, Anthony Otto, Adeline Vulin, Anne Rochat, Julie Dumonceaux, Luis Garcia, Etienne Mouisel, Christophe Hourdé, Raymond Macharia, Melanie Friedrichs, Frederic Relaix, Peter S. Zammit, Antonios Matsakas, Ketan Patel, Terence Partridge and Eric N. Olson
Proceedings of the National Academy of Sciences of the United States of America
Vol. 106, No. 18 (May 5, 2009), pp. 7479-7484
Stable URL: http://www.jstor.org/stable/40483298
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Muscle Hypertrophy Driven by Myostatin Blockade Does Not Require Stem/Precursor-Cell Activity
Preview not available

Abstract

Myostatin, a member of the TGF-β family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.

Page Thumbnails

  • Thumbnail: Page 
[7479]
    [7479]
  • Thumbnail: Page 
7480
    7480
  • Thumbnail: Page 
7481
    7481
  • Thumbnail: Page 
7482
    7482
  • Thumbnail: Page 
7483
    7483
  • Thumbnail: Page 
7484
    7484