Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Biomarker Based on the Stable Isotopes of Nickel

Vyllinniskii Cameron, Derek Vance, Corey Archer, Christopher H. House and Donald E. Canfield
Proceedings of the National Academy of Sciences of the United States of America
Vol. 106, No. 27 (Jul. 7, 2009), pp. 10944-10948
Stable URL: http://www.jstor.org/stable/40483727
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Biomarker Based on the Stable Isotopes of Nickel
Preview not available

Abstract

The new stable isotope systems of transition metals are increasingly used to understand and quantify the impact of primitive microbial metabolisms on the modern and ancient Earth. To date, little effort has been expended on nickel (Ni) isotopes but there are good reasons to believe that this system may be more straightforward, and useful in this respect, than some others. Here, we present Ni stable isotope data for abiotic terrestrial samples and pure cultures of methanogens. The dataset for rocks reveals little isotopic variability and provides a lithologic baseline for terrestrial Ni isotope studies. In contrast methanogens assimilate the light isotopes, yielding residual media with a complementary heavy isotopic enrichment. Methanogenesis may have evolved during or before the Archean, when methane could have been key to Earth's early systems. Our data suggest significant potential in Ni stable isotopes for identifying and quantifying methanogenesis on the early planet. Additionally, Ni stable isotope f ractionation may well prove to be the fundamental unambiguous trace metal biomarker for methanogens.

Page Thumbnails

  • Thumbnail: Page 
[10944]
    [10944]
  • Thumbnail: Page 
10945
    10945
  • Thumbnail: Page 
10946
    10946
  • Thumbnail: Page 
10947
    10947
  • Thumbnail: Page 
10948
    10948