Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The WD40 Repeat Protein NEDD1 Functions in Microtubule Organization during Cell Division in Arabidopsis thaliana

C. J. Tracy Zeng, Y.-R. Julie Lee and Bo Liu
The Plant Cell
Vol. 21, No. 4 (Apr., 2009), pp. 1129-1140
Stable URL: http://www.jstor.org/stable/40536869
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The WD40 Repeat Protein NEDD1 Functions in Microtubule Organization during Cell Division in Arabidopsis thaliana
Preview not available

Abstract

Although cells of flowering plants lack a structurally defined microtubule-organizing center like the centrosome, organization of the spindles and phragmoplasts in mitosis is known to involve the evolutionarily conserved γ-tubulin complex. We have investigated the function of Arabidopsis thaliana NEDD1, a WD40 repeat protein related to the animal NEDD1/GCP-WD protein, which interacts with the γ-tubulin complex. The NEDD1 protein decorates spindle microtubules (MTs) preferentially toward spindle poles and phragmoplast MTs toward their minus ends. A T-DNA insertional allele of the single NEDD1 gene was isolated and maintained in heterozygous sporophytes, and NEDDI's function in cell division was analyzed in haploid microspores produced by the heterozygote. In approximately half of the dividing microspores exhibiting aberrant MT organization, spindles were no longer restricted to the cell periphery and became abnormally elongated. After mitosis, MTs aggregated between reforming nuclei but failed to appear in a bipolar configuration. Consequently, defective microspores did not form a continuous cell plate, and two identical nuclei were produced with no differentiation into generative and vegetative cells. Our results support the notion that the plant NEDD1 homolog plays a critical role in MT organization during mitosis, and its function is likely linked to that of the γ-tubulin complex.

Page Thumbnails

  • Thumbnail: Page 
[1129]
    [1129]
  • Thumbnail: Page 
1130
    1130
  • Thumbnail: Page 
1131
    1131
  • Thumbnail: Page 
1132
    1132
  • Thumbnail: Page 
1133
    1133
  • Thumbnail: Page 
1134
    1134
  • Thumbnail: Page 
[1135]
    [1135]
  • Thumbnail: Page 
1136
    1136
  • Thumbnail: Page 
1137
    1137
  • Thumbnail: Page 
1138
    1138
  • Thumbnail: Page 
1139
    1139
  • Thumbnail: Page 
1140
    1140